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Nomenclature

A function of r\ u

c pressure gradient
ci coe.cient "i � 9\ 0\ 1\ 2\ 3#
c? � a2:n1c
Cp speci_c heat
f dimensionless streamfunction
h\ k grid size
` gravitational acceleration
mi\ m?i coe.cients "i � 9\ 0\ 1\ 2\ 3#
ni\ n?i coe.cients "i � 9\ 0\ 1\ 2\ 3#
Nu dimensionless Nusselt number
Pr Prandtl number
r\ u\ z dimensionless cylindrical coordinates
Ra Rayleigh number
Re Reynolds number based on the axial velocity
Rr Reynolds number based on the angular velocity
u\ v\ w dimensionless velocity components
Wm mean axial velocity[

Greek symbols
a radius of the pipe
b thermal expansion coe.cient
o � ReRaRr

z dimensionless vorticity
U dimensionless temperature
k di}usivity
l the ratio h:k
n kinematic viscosity
p radian
r ~uid density
t temperature gradient
tax dimensionless axial shear stress
taz dimensionless azimuthal shear stress

� Corresponding author[

v relaxation factor
V angular velocity[

Subscripts:superscripts
9\ 0\ 1\ 2\ 3 position of the nodes on the computational
domain
s loop counter[

Symbol
91 dimensionless Laplacian operator[

0[ Introduction

The ~ow in a rotating or in a heated straight pipe has
been extensively studied not only for academic interest\
but also for the great importance in mechanical appli!
cations such as in pipe heat exchangers\ in cooling sys!
tems of rotor blades in gas turbines and in chemical
mixing[ The viscous ~ow in a straight pipe rotating about
an axis perpendicular to its own\ has as a result the
generation of a secondary ~ow that is sustained by the
Coriolis force introduced by the rotation of the pipe[
Barua ð0Ł used a regular perturbation about the Poiseuille
~ow limit\ similar to Dean|s ð1\ 2Ł approach for stationary
and curved pipe ~ow[ He showed that rotation generates
a secondary ~ow and that it depends on the non!dimen!
sional parameter Rr � "1Va1:n#\ where V is the angular
frequency of rotation\ a is the radius of the pipe and n

is the kinematic viscosity[ Subsequent boundary!layer
analysis also predicted a signi_cant increase in the friction
factor with rotational speed for small rotational rates and
high axial pressure gradients "Mori and Nakayama ð3Ł\
Ito and Nanbu ð4Ł#\ the latter group also obtaining sat!
isfactory agreement with their experimental results[
Mansour ð5Ł considered higher rotational velocities using
a computer extension for the perturbation expansion\
similar to a method that was applied by Van Dyke ð6Ð
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8Ł who studied the ~ow in a stationary straight pipe[
According to this method the equations of motion are
modi_ed\ so that they are depend on a single parameter
K � ReRr\ under the assumption that Re : �\ Rr : 9\
where Re is the Reynolds number based on the axial
velocity[ Benton ð09Ł considered small rotational vel!
ocities and constructed a small perturbation expansion
about the HagenÐPoisseuille ~ow[ Later\ Benton and
Boyer ð00Ł assumed the case of a rapid rotating conduit
with RrRe ¾ 0[ Duck ð01Ł used a numerical procedure\
based on a combination of Fourier decomposition and
_nite di}erence discretization to study the ~ow structure
in rotating circular ducts[

The _rst experiments concerning a rotating pipe were
conducted by Trefethen ð02Ł who observed that rotation
transfers the onset of turbulence to higher Reynolds num!
bers[ Later\ Euteneuer and Piesche ð03Ł in their exper!
imental studies in circular pipes con_rmed that the
pressure drop is signi_cantly higher than that for straight
pipes\ in agreement with the theoretical results[

The earliest analysis on the ~ow in a heated straight
pipe was considered by Morton ð04Ł[ His study was
restricted to small rates of heating and he obtained solu!
tions for the axial velocity and temperature as power
series depending on the parameters ReRa\ where Ra is
the Rayleigh number based on the temperature gradient
along the pipe wall[ Mori and Nakayama ð05Ł assumed
velocity and temperature boundary layers along the pipe
wall and analysed theoretically the ~ow _eld and the
temperature _eld[ Van Dyke ð06Ł modi_ed Morton|s vari!
able in order to clarify the dependence of the problem on
the parameters Pr\ Ra and Re\ where Pr is the Prandtl
number[ The advantage of these simpli_cations was that
the ~ow depended only on two parameters o � PrRaRe

and Pr\ respectively[ Guiasu et al[ ð07Ł were able to com!
pute many terms of the series on Morton|s problem using
symbolic computation packages[

In the present work we study the fully developed steady
~ow in a straight rotating heated pipe with circular cross!
section[ The equations of motion and energy depend on
three parameters that characterize the ~ow\ the rotational
Reynolds number Rr\ the Reynolds number based on the
axial ~ow Re and the Rayleigh number Ra\ and they are
solved both analytically and numerically[ In the ana!
lytical solution the functions of the ~ow are expanded in
power series of the parameters Rr and Ra[ Because of the
di.culties of the problem introduced by the presence of
these three parameters\ we were able to compute only ten
terms in each series\ so that the range of values of the
parameters for which the analytical solution converges is
limited by the products ReRa ³ 0999 and ReRr ³ 149[
However the analytic expression is of some value because
it provides us with a mathematical expression showing
the trend of the ~ow characteristics as well as with a
benchmark for the numerical solution[ In the numerical
solution we consider a grid of mesh points in the circular

domain and we modify the di}erential equations by
approximating all partial derivatives with central di}er!
ences[ In this way we deduce an algebraic system of equa!
tions for all the points of the circular region that is solved
using an iterative procedure[ The limits of the products
ReRa and ReRr for which the numerical solution is valid
are ReRa ³ 19 999 and ReRr ³ 4999[ We compared the
results obtained by the two methods and _nally we exam!
ined the in~uence of Coriolis and buoyancy forces on the
~ow and the dependence of some properties of the ~ow\
as the axial and azimuthal stresses\ the Nusselt number\
on the previous products[

1[ Equations of motion and energy

A straight pipe of circular cross!section rotates in a
horizontal plane about a vertical axis Oy\ normal to
its own[ The temperature gradient along the axis Oz is
constant[ The geometry implies the use of a non!
dimensional cylindrical coordinate system r\ u and z "Fig[
0#[ In this system let u\ v and w be the corresponding
velocity components and V the angular velocity[ For
an observer looking downward the pipe rotates in the
counterclockwise direction[ Let f and U be the non!
dimensional streamfunction and ~uid temperature\
respectively[ The equations of motion and energy for the
steady state are
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and Ra is the Rayleigh number\ Rr is the Reynolds number
based on the rotation\ Re is the Reynolds number based
on the mean axial velocity and Pr is the Prandtl number[
The preceding nondimensional numbers of the ~ow are
de_ned as follows

Ra �
b`a3

n1
Pr\ Re �

Wma

n
\ Rr �

1Va1

n
\ Pr �

nrCp

k

where n is the kinematic viscosity\ r is the ~uid density\
Cp is the speci_c heat\ ` is the gravitational acceleration\
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Fig[ 0[ Cylindrical coordinate system[

b is the thermal expansion coe.cient\ t is the temperature
gradient along the axis of the pipe\ Wm is the mean vel!
ocity and k is the di}usivity[ The Boussinesq form has
been employed in the preceding equations of motion to
approximate the buoyancy forces[

The boundary conditions are f � "1f:1r# �w � U � 9
at r � 0\ whereas f\ w and U are _nite at r � 9[

2[ Methods of solution

Equations "0#Ð"2# have been solved analytically and:or
numerically[ For the analytic solution we assume that
each of the variables f\ w and U can be expanded in a
power series of the form
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In this way equations "0#Ð"2# are split in a number of
di}erential equations that are solved analytically[ The

present analysis is carried out up to ReRa ¾ 0999 and
ReRr ¾ 149[ Of these limits the _rst has been set by
Morton ð04Ł and has been veri_ed by Yao and Berger
ð08Ł and Karahalios ð19Ł[ The second has been established
by Ito and Motai ð10Ł[ Comparison of the results of the
analytic method with the corresponding results of the
numerical method\ that follows\ shows that it fails to
converge for values of these products greater than those
already set[

The numerical method consists of the following steps[
The circular region 9¾ r ¾ 0\ 9¾ u ¾ 1p "Fig[ 1# is

divided into a grid formed by the radial lines u � jk and
the circles r � ih\ where h\ k denote the size of the grid in
the increasing radial and angular direction\ respectively[
Let "r\ u# be a typical grid point[ We denote "r\ u# by
"r9\ u9#[ Adopting the Southwell notation all quantities at
the point "r9\ u9# and the neighbouring points "r9¦h\ u9#\
"r9\ u9¦k#\ "r9−h\ u9# and "r9\ u9−k# are denoted by the
subscripts 9\ 0\ 1\ 2 and 3\ respectively[ Introducing the
vorticity z\ equation "0# takes the following form
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whereas the other two "1#Ð"2# remain unaltered[
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Fig[ 1[ Mesh points in rÐu plane[

In the next we give a brief description of the numerical
method\ solving equation "2#[ We separate equation "2#\
into two equations\ namely
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in which A"r\ u# is an unknown function[ After lengthy
manipulations "Petrakis and Karahalios ð11Ł# we derive
the following equation
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Equation "7# holds at all grid points for which 9 ³ r ³ 0[
The matrix associated with "7# is diagonally dominant[
In this way we obtain approximations to the values of U
at all grid points in the domain 9 ³ r ³ 0\ 9 ¾ u ³ 1p[
The boundary conditions are that the temperature is zero
at r � 0 and _nite at r � 9[ The truncation error in "7# is
O"h3#¦O"h1k1#[ It should be noted here that the con!
ditions at the centre of the pipe cannot be ful_lled with
the use of the preceding system of equations[ Hence we
consider a Cartesian coordinate system "Fig[ 2# with
origin at the centre of the circular cross!section[ In this
system equation "2# takes the form
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In a similar way we deduce analogous equations to
approximate equations "1#\ "5# and "6# at all grid points
within the domain 9³ r ³ 0\ 9¾ u ³ 1p[ In order to
solve numerically the previous _nite!di}erence equations
we employ the S[O[R[ method repeating the iterative
procedure until the adopted criterion of accuracy for each
one of them is satis_ed[ For U9 we have adopted that

max b 0−
U"s#

9

U"s¦0#
9

b¾ 09−4

and the same is valid for the other variables w9\ z9 and f9[
Once all quantities have converged to limits\ the iter!

ative sequence is terminated[ In this way the numerical
procedure converges for a large range of values of the
parameters Rr\ Ra and Re[ In particular\ the accuracy of
the numerical solution is limited by the values of the
products ReRr ¾ 4999 and ReRa ¾ 19 999 with Rr ³ 29\
Ra ³ 79 and Re ³ 4999[ The value of the Prandtl number
for which our results obtained is equal to unity[
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Fig[ 2[ Axial velocity pro_le along the horizontal diameter[

3[ Results and discussion

In the next all graphs are based on the numerical solu!
tion\ unless it is otherwise stated[ In Fig[ 2 we show the
variation of the axial velocity pro_le w with r along the
horizontal diameter of the pipe for various values of the

product ReRr and for Rayleigh number varying between
Ra � 0 and Ra � 79[ For ReRr ³ 199 and for small values
of Ra "Ra � 1\ 4\ 09# "Fig[ 2a# the curves are nearly para!
bolic and like those in the classical solution of the HagenÐ
Poisseuille ~ow[ As Ra increases\ the maximum of the
axial velocity reduces to lower values and the curves
become more ~at[ This is explained by the fact that the
axial induced by the temperature gradient opposes the
axial ~ow due to the pressure gradient[ Hence an increase
in Ra causes decrease in w[ When ReRr takes larger values
and Ra varies "Fig[ 2b# the axial velocity curved become
again ~at[ In this case a thin boundary layer is formed
on the inner side in agreement to Benton and Boyer ð00Ł[
It is realized that the variation of the Rayleigh number
does not a}ect the form of the axial velocity pro_le[ In
Fig[ 3 we make a comparison between the results of the
two methods\ the analytical and the numerical\ respec!
tively[ As it is seen\ for ReRr � 199 and Ra � 4\ the results
of the analytical solution are in good agreement with
those of the numerical solution[ As the values of Re\ Ra

and Rr increase the analytical solution fails to converge[
The limits of the values of the parameters for which
the results of the analytical solution are acceptable are
ReRr ³ 149 and ReRa ³ 0999[ The _rst limit has been also
established by Ito and Motai ð10Ł and the second by
Morton ð04Ł[ The axial shear stress tax�"1w:1r#r�0 along
the pipe wall is plotted in Fig[ 4 for ReRr � 2999 and Ra

varying between the values Ra � 0 and Ra � 4[ We see
that the variation of the Rayleigh number Ra does not
seriously a}ect the values and the position of maximum
of the axial shear stress[ This is so because for such

Fig[ 3[ Comparison between the analytical and the numerical
solution[
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Fig[ 4[ Axial shear stress along the pipe wall[

large values of ReRr and within the limits of the present
numerical solution the axial velocity pro_les remain
una}ected by the variation of the Rayleigh number\ as it
is realized by Fig[ 2b[

In Fig[ 5 we show the secondary ~ow pattern and the
isovelocity curves for Re � 099 "Fig[ 5a\ b# and Re � 4999
"Fig[ 5c#[ Figure 5a\ b refer to the same Rayleigh number
Ra � 79 but to di}erent rotational Reynolds numbers
"Rr � 0\ 29# so that the e}ect of Coriolis forces on the
axial and on the secondary ~ow will be illustrated[ It is
known that in the absence of heat the secondary ~ow
streamlines are symmetric with respect to the horizontal
diameter of the pipe and in the main core of the ~uid
they run along this diameter[ In addition\ these stream!
lines tend to accumulate to that side of the wall toward
which the Coriolis force points\ when the frequency of
rotation increases[ On the other hand\ in the case of no
rotation\ the secondary ~ow streamlines are symmetric
with respect to the vertical diameter[ In both cases the
isovelocity contours are circles concentric to the pipe[ In
Fig[ 5a we show the e}ect of a weak rotation on the
secondary ~ow[ The streamlines still remain symmetric
to the vertical diameter of the pipe[ Increase in the value
of the rotational number "Fig[ 5b# turns the ~ow _eld so
that the dividing streamline becomes nearly horizontal[
It is therefore concluded that a large frequency of rotation
tends to restore the secondary ~ow pattern to the state
of straight rotating pipe and nearly cancels the heating
e}ects[ This is shown in Fig[ 5c[ In addition the secondary
~ow becomes faster[ This is attributed to the mutual e}ect
of each force[ Since the Coriolis force and the buoyancy
force generate independently a secondary motion\ the
two motions enhance each other and eventually result in
a stronger rotational ~ow[ It is worthy to note that for

these large products ReRr and ReRa the dividing stream!
line does not pass through the centre of the pipe\ neither
is straight anymore[ With respect to the axial velocity
contours it is seen that an increased Rayleigh number
displaces its maximum downward whereas for high
Reynolds number Rr the maximum is driven along the
direction of the Coriolis force[ Conclusively\ we observe
that a strong secondary ~ow may occur when either Rr is
large and Ra is small or when Rr is small and Ra is large[ In
both cases a strong secondary ~ow increases the viscous
shearing stresses and\ as a result\ the axial velocity falls
to lower values[ In Fig[ 6 we examine the e}ect of the
parameters Ra and Rr on the azimuthal shear stress
taz�"11f:1r1#r�0 on the pipe wall[ Increase either in the
frequency of rotation or in the temperature gradient\
induces a relatively strong secondary ~ow and accord!
ingly an increased azimuthal shear stress[

The temperature pro_le along the horizontal diameter
is presented in Fig[ 7 for Re � 4999[ It is seen that\ in
general\ the temperature distribution follows the form of
the axial velocity\ a property that also holds for iso!
thermal curves[ Finally\ in Fig[ 8 we have plotted the
variation of the Nusselt number Nu � "1U:1r#r�0 on the
pipe wall for ReRr � 2999 and Ra varying[ When the
product ReRa is small "ReRa � 2999\ 5999# the form of
the curves remains una}ected\ whereas for ReRa � 04 999
the maximum and the minimum of the Nusselt number
is slightly displaced to smaller angles[ This is because the
bulk of the heat ~ux is conveyed by the axially moving
~uid[

4[ Conclusions

The steady ~ow and heat transfer is investigated in a
rotating straight pipe[ The e}ects of Coriolis and buoy!
ancy forces on the ~ow structure and on the ~ow proper!
ties are studied[ The obtained results are summarized as
follows]

"0# The analytical solution fails to converge for values of
the products ReRr and ReRa greater than the values
149 and 0999\ respectively\ whereas the cor!
responding values for the numerical solution are 4999
and 19 999[ In addition the present numerical solu!
tion holds for Rr ³ 29\ Ra ³ 79 and Re ³ 4999[

"1# The ~ow _eld and the temperature distribution are
a}ected by the rotation of the pipe and the heat and
are dependent on the values of the products ReRr and
ReRa\ respectively[

"2# The ~ow properties\ such as the shear stresses and
the Nusselt number\ depend on the values of the
products ReRr and ReRa\ respectively[ However\ their
variation is not signi_cant when ReRa increases[



Fig[ 5[ Secondary ~ow pattern and isovelocity contours[

Fig[ 6[ Azimuthal shear stress on the pipe wall[ Fig[ 7[ Temperature distribution along the horizontal diameter[
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Fig[ 8[ Variation of the Nusselt number on the pipe wall[
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